Civil Engineering Applications Using Tire-Derived Aggregate (TDA) Selected California Projects

Civil Engineering Applications Using Tire-Derived Aggregate (TDA) Selected California Projects Presented for The California State University, Chico, California Pavement Preservation Center

Joaquin Wright, Principal

TDA Presentation Summary Pavement Preservation Center,

January 5th 2009

- Beneficial properties of TDA
- -Construction management aspects of building with TDA
- -Embankment projects
- Slide repair projects
- Retaining wall backfill projects
- -Vibration Attenuation projects
- Retaining wall backfill projects
- -Landfill Applications

Beneficial Properties of Tire Derived Aggregate (TDA) in Civil Engineering Applications

Tire Derived Aggregate (TDA) has properties that civil engineers, public works directors & contractors need

□Free Draining/High Permeability

□Low earth pressure

Good thermal insulation

Durable

□ May be cheapest solution

Help solve significant environmental problems

Conserve natural aggregate resources

Uses for Tire Derived Aggregate (TDA)

Lightweight Embankment Fill

Lightweight TDA for slide repair

Uses for Tire Derived Aggregate (TDA)

Lightweight TDA for Retaining Walls

TDA for vibration attenuation

D TDA in Landfill Applications

CM Aspects for TDA Projects

- Pre-Construction
- Construction

Pre- Construction Activities

Design and Overall Project Understanding

- Develop Comprehensive Understanding
 - Communication with team for Design, Construction, and Construction Management expectations.
 - Delivery methods and rates
 - Material quality/verification
 - Stockpile location

Regulatory Agency Outreach

- Education and Communication
 - Local Water Board
 - Local Fire Department
 - Interagency Agreements CalTrans/CIWMB

Construction Activities

Construction Understanding

- Communication with team at kick off meeting, TDA Construction, when, where and team expectations.
- Placement techniques
 - Rates of Delivery, number of suppliers
 - q/a of material
 - Advantageous changes in techniques
 - Documentation of work

As-builts

- Documentation of changes
 - Data retrieval methods and verification
 - Drawings of TDA location, sensors etc., future work

Embankment Fill Application DIXON LANDING

STA. 103+90 (T) 30 (T) 26 $(1)^{22}$ (T) $\mathbf{\widehat{O}}^{\prime\prime}$ $(T)^{21}$ $(T)^{20}$ $(T)^{06}$ $(\hat{\mathbf{T}})^n$ 2 FT.-3 FT.-3 FT. 2 FT. Lightweight Embankment Fill Dixon Landing S880 On Ramp FORTED 50 F APPROX. 102+80 103+20 SENNEC,INC 103+60

Dixon Landing Embankment Fill

Savings to the State \$240,000

Confusion Hill Embankment Project

Skenned, inc

Confusion Hill Backfill Project Redwoods River Resort Campbell Brothers Confusion Hill Route 101-SOUTH BRIDGE NORTH BRIDGE Muntain Creek

Confusion Hill Existing alignment

Confusion Hill bridges

CONFUSION HILL

NORTH BRIDGE 01- MEN-101 PREPARED BY DES, BRIDGE ARCHITECTURE & AESTHETICS

CONFUSION HILL

SOUTH BRIDGE 01- MEN-101 PREPARED BY DES, BRIDGE ARCHITECTURE & AESTHETICS

KENNEC, INC

Confusion Hill TDA Embankment fill

Light Weight TDA Fill for "Slip outs"

Lightweight Fill for "Slip Out" Road Slide Repair Mendocino and Sonoma Counties

General view of tda slide repair

GENERAL TDA SLIDE REPAIR SECTION

Kenned, ind

Marina Drive slide repair

KENNEC, INC

Marina Drive slide repair

Geysers road slide repair

SENNED, INC

Geysers road slide repair

Light Weight Backfill behind retaining walls

%Enned,ind

Back-cut of slope prior to retaining wall foundation installation

Wall foundation installed – rebar cage under construction

Strain Gauge Installation

Grinding rebar – Preparation for strain Gauge Installation

Spot welding strain gauge to rebar

Spot welding strain gauge

Installed strain gauges (typical)

Installation of strain gauge cover

Covers installed and sealed

Installed strain gauge (typical)

Double rebar install (typical)

Placement of foundation soil

Compaction of foundation soil

Unloading TDA

Installed TDA

Typical Station

Pressure cell installed

TDA placed and compacted

TDA placement

Data collection during construction

Final lifts of TDA, notice Geotextile wrap on both sides of TDA

TDA compaction

Final geo-textile wrap

Cover soil delivery, placement, and compaction

Completed cover soil installation, 2 feet

Typical gravel/soil section

Road way backfill

86,000 TIRES

2003 9 19

Wall 207 Riverside, Ca

Wall 119 & 207 Riverside, Ca

As- Builts!

Vibration Attenuation

VTA-Vasona Line Extension 2001

100,000 TIRES

Use of TDA in Landfills

- Landfill Gas Pipe Protection
- Landfill Bio-Reactor System
- Drainage Layers in Landfill Covers
- Landfill Gas Extraction Trenches
- Daily and Intermediate Alternative Cover

Why use TDA in landfill systems?

- High Permeability/Free Draining
 Compressible
- Compressible
- Lightweight
- Cost savings
- Recycling (100 Tires = 1.5 cy)

Landfill Gas Collection Trenches, Replace Gravel

- Type A for Gravel Replacement
- Oversize Auger for Vertical Wells
- Geo-textile separator between TDA and Soil or Fine Material

- Typical excavation & relocation of refuse
- Typical equipment, End Dump, Excavator, Skip loader, Air monitor

- Remove refuse/soil place pipe bedding, place pipe, cover with TDA
- Geo-textile separator between TDA and Soil or Fine Material

Geo-textile separator between TDA and Soil or Fine Material

- Geo-textile separator between TDA and Soil or Fine Material
- Replace cover material, fill operations as usual, draw from system when appropriate

What is Type A TDA?

Type A TDA – Typical, Three inch minus,

- 1 Ton = 1.4 cubic yards
- 1 Ton = 100 tires (PTE)
- In Place Density = 45-58 lb/ft³
- Permeability > 1 cm/sec for many applications

Uses – Drainage material, septic leach fields, Vibrations dampening layers under light rail tracks. Gas collection media, Leachate collection material

Dana Humphrey, 2005

What is Type B TDA?

Type B TDA – Typical, 12 inch minus,

- 1 Ton = 1.5 cubic yards
- 1 Ton = 100 tires (PTE)
- In Place Density = 45-50 lb/ft³
- Permeability > 1 cm/sec for many applications

Uses – Lightweight fill for embankments, Lightweight fill behind retaining walls, Gas collection media, Leachate collection material

Dana Humphrey, 2005

Size of TDA

TDA Civil Applications

Lightweight Embankment Fill

Vibration AttenuationLandfill Applications

- Lightweight Backfill Behind Retaining Walls
- Lightweight fill for road slide repairs

Questions ?

